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Abstract— Alternate test methodology provides significant test
time and equipment cost reduction for test of analog and radio
frequency devices by crafting a single test stimulus and mapping
the response signatures into all specifications at once. Although
many previous publications reported successful implementations
of alternate test, their focus has been parametric faults resulting
from variations in process parameters; they do not include a
systematic method to guarantee that all catastrophic faults are
detected as well. In this paper, we propose a signature filtering
mechanism which can be used with regular alternate test flow
in order to effectively mark out catastrophic faults. The scheme
makes use of a training set of parametric faults only, hence does
not assume any predefined fault list. The case study on a low-
noise amplifier shows that the proposed scheme can differentiate
catastrophic defects with 100% coverage.

I. INTRODUCTION

Testing state of the art analog and RF devices became a
major bottleneck in high volume production further driven
by the growing need for tighter quality control. The foremost
problems result from the inherent complexity of the devices
and the extreme sensitivity of RF signals to interference. Many
different setups and test equipments are required in order to
check if the device conforms to its projected performance
parameters. During the high volume manufacturing, these
performance parameters are measured one by one for each
device and tested against defined limits called specifications.
Each specification measurement requires a different test setup
and a different set of test equipment. As a result, RF automatic
test equipment (ATE) is put together by integrating many
different benchtop components that can together accomplish
a wide range of possible specification tests. Together with
signal integrity, precision and repeatability concerns, the initial
cost of a RF ATE becomes prohibitively expensive. Since
specifications are tested one by one in a sequential manner,
the operating cost also scales with the total number of speci-
fications.

Alternate test methodology [1] provides a solution to this
bottleneck by cutting down testing time and reducing the
requirements on ATE. In this paper, we propose a systematic
method to extend alternate test in such a way to guarantee that
catastrophic and parametric faults are equally detected without
any predefined fault dictionary.

A. Alternate Test Methodology

Alternate test replaces the sequential nature of many differ-
ent specification tests with a single test applied to the device
under test (DUT) and the response signature is mapped into
all specifications at once. There are mainly two components to
this flow: (i) stimulus optimization in which the test stimulus is
carefully crafted to yield a significant correlation between the
response and the specification variations, and (ii) measurement
synthesis which constructs mapping functions from responses
to specifications using supervised learning [2].

The stimulus optimization and measurement synthesis are
performed on a sample set of training devices which constitute
a representative set of process parameter variations present
in the high volume manufacturing (HVM) environment. This
way, the constructed functions can efficiently predict different
specification values of a DUT given its signature response
to the optimized alternate stimulus [3]. A brief review of
different alternate test applications is available in [4], these
examples show that alternate test provides significant test time
and equipment cost reduction as well as offers built-in test
solutions for analog and RF devices.

B. Analog Fault Models

The fault models for analog/RF devices and associated
coverage metrics are very device dependent. Furthermore,
the common open, short and bridging models only cover a
small portion of possible faults. These catastrophic faults
seriously impair the functionality of the circuit. The larger
class, called parametric faults, usually results from process
parameter variations and dictates itself as small deviations
from the optimal operating point. Most parametric faults
are redundant in the sense that the device still satisfies the
datasheet specifications. Hence, modern analog test method-
ologies focus on specification testing rather than structural
tests. Structural testing [5]–[8] usually lacks the accuracy
to classify parametric failures efficiently without imposing
larger yield loss. Furthermore, testing of catastrophic faults
in this manner depends on a predefined fault list or a fault
dictionary. Therefore, all possible catastrophic faults need to
be studied extensively beforehand and the introduction of new
fault modes may easily void the generated test.



Since alternate test is a specification-based methodology,
its focus is on accurately detecting parametric faults. With
very precise specification prediction, its ability to detect
catastrophic faults is implicit because catastrophic faults gen-
erate much larger variations in response signatures. While
parametric fault signatures are the focus in stimulus opti-
mization, the catastrophic fault signatures are considered only
at the HVM level with hardware samples. This way the
final mappings include the range of signatures resulting from
catastrophic faults. However, this scheme still assumes that
the final training set is selected in such a way to represent all
members of the fault dictionary. The alternate test literature
presents no studies for cases in which the fault list is not
complete or a new fault class shows up later during the
manufacturing cycle.

II. PROPOSED SCHEME

In this study, we propose a new variation of alternate
test which effectively classifies catastrophic faults as well
as parametric ones without the need for a predefined fault
list. The stimulus optimization and measurement synthesis
are carried out with a training set composed of only process
parameter variations as in regular alternate test methods. In
addition, we build a signature filter from the range of signature
values within this training set. Devices with catastrophic faults
have signatures significantly outside this range, hence they can
easily be filtered out by this filter as faulty circuits; while
regular parametric and redundant faults pass this filter and are
fed into the mapping functions for specification prediction and
further classification as in regular alternate test flow.

A. Signature Filter

One key step is the construction of the signature filter.
An alternate signature is a set of response values processed
digitally, for example: a DUT response can be sampled at
a predetermined rate and digitized with a given accuracy,
then the samples are converted into frequency domain using
FFT, and the magnitudes of certain frequency components
make up the signature. Constructing a signature filter means
finding upper and lower limits for each component (ex: FFT
magnitude at certain frequency bin) of the signature under
process parameter variations. There are basically two methods
to determine these limits: (i) deterministically using corner
analyses, or (ii) probabilistically using Monte Carlo anal-
yses. The deterministic way requires a sensitivity analysis
tool which can generate precise corner data from the given
netlist and process parameter variations. For high frequency
RF netlists, the higher order correlations between process
parameters require very complicated abstract models for ef-
ficient sensitivity analyzers. These abstract models can only
be generated by a synthesis tool, which is most of the time
not feasible for practical RF circuits. Hence, in this study
we employed a probabilistic method, which is also inherently
compatible with alternate test generation process.

The probabilistic method uses the maximum and minimum
values of the signature components over the Monte Carlo
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Fig. 1. 900-MHz low-noise amplifier (LNA).

set generated for measurement synthesis. In order to account
for the probabilistic corners, the limits are extended by a
percentage of the corresponding range. The percentage value
is selected to be 25% based on the characteristics of the
supervised learner MARS [9]. Furthermore, the upper limits
of the responses corresponding to fundamental tones of the
stimulus are extended by an additional margin. This way
devices with exceptionally good operating points (designated
by larger gain) are not penalized. In Section IV-B, we show
a numerical example which walks the readers through filter
construction.

III. LOW-NOISE AMPLIFIER

In order to demonstrate the proposed scheme, we use a
single ended 900-MHz low-noise amplifier (LNA). The LNA
in Figure 1 is chosen because it is included in the Cadence RF
Library [10], hence interested readers can easily duplicate and
improve our experiments. Furthermore, this LNA has been the
subject of different alternate test experiments in the literature
[4], so the performance of the proposed scheme can be directly
compared.

The 300-instance training set is generated through the
Monte Carlo simulation of 6 process variables: saturation
currents (ISN ,ISP ) and forward gains (VFBN ,VFBP ) of NPN
and PNP transistors, sheet resistance (Rsheet) and unit capaci-
tance (Cbase). All variables are linearly distributed with ±30%
variation around their nominal values. A second 100-instance
validation set is also generated independently with the same
distributions. Seven specifications of input-referred third order
intercept point (IIP3), 1dB compression point (1dBC), noise
figure (NF), gain (Gain), reverse isolation (RevIso), input and
output standing wave ratios (Sin, Sout) are simulated and
recorded for these 400 devices. The nominal, maximum and
minimum values for each specification are listed in Table I
together with pass/fail decision levels.

All possible opens, shorts and bridges are considered for
catastrophic faults. Over 200 possible variations morph to



TABLE I
SPECIFICATION STATISTICS OVER VALIDATION SET

Spec Unit Nom Max Min P/F UHL LHL
IIP3 dBm 1.84 7.65 -1.1 > −0.8 10 -4

1dBC dBm -10.7 -4.8 -13.9 > −13.5 0 -18

NF dB 4.1 5.3 3.74 < 6 8 0

Gain dB 14.5 15.1 11.6 > 12.4 15 8

RevIso dB 31.6 32.4 30.9 > 20 35 15

Sin / 2.2 2.8 1.8 < 8 10 0

Sout / 1.09 2.1 1.06 < 8 10 0

P/F: pass fail boundary, UHL/LHL: upper/lower hard limits

48 distinct faults. All faults are manually inserted into the
netlist and devices are simulated for seven specifications under
test. Due to the nature of catastrophic faults, some specifica-
tions may have extreme values. For example, for an instance
with no gain, the 1dB compression point hypothetically goes
to infinity. In order to better handle these extreme values,
each specification value is limited by an upper and a lower
hardbound as listed in Table I.

In order to cover a variety of catastrophic faults, we have
simulated additional instances by replacing each resistor and
capacitor with other ones at 1000-times, 10-times, 1.5-times,
1/1000th, 1/10th and half of their original values. This way
we introduced 78 extra fault modes, 6 for each capacitor and
resistor value. Also, we have simulated 5 other fault modes
which represent ground bounces and resistive power paths.

All together it comes to 100 candidates for parametric faults
(validation set) and 131 candidates for catastrophic faults. 57
out of 131 are actually redundant faults meaning that all of
their specifications are within the pass limits listed in Table I.
80 out of 100 instances in the validation set are also within
pass limits.

IV. ALTERNATE TEST IMPLEMENTATION

A. Alternate Test without Signature Filter

First we present the results for a regular alternate test
scheme using the data set and circuit discussed in Section III.
The optimized stimulus has two tones each with −8dBm
power at 900MHz and 920MHz. The responses are sampled,
digitized and converted to frequency domain by a 1024-point
FFT operation. The amplitudes of 13 frequency components
from 780MHz to 1020MHz separated by 20MHz constitute
the signature. The mapping functions are generated with the
300-instance training set. The key point here is that training
set only includes instances with parametric faults.

Figure 2 shows the ISO graphs of six specifications (Sout
is similar to Sin) for the 100-instance validation set, where
x-axis marks the actual specification value obtained through
simulation and y-axis marks those predicted by alternate test.
The 45 ◦ line shows the ideal prediction, while Table II lists the
maximum and rms errors for each specification. All instances
are correctly classified giving 100% fault coverage and 0%
yield loss.

TABLE II
MAXIMUM AND RMS SPECIFICATION PREDICTION ERRORS

Spec Unit Rms Max
IIP3 dB 0.05 0.20

1dBC dB 0.09 0.30

NF dB 0.01 0.03

Gain dB 0.02 0.13

RevIso dB 0.01 0.06

Sin / 0.01 0.02

Sout / 0.01 0.04

for parametric faults only with regular alternate test

However, when we feed in the signatures from 131
catastrophic fault candidates, 13 instances are misclassified,
3 of which are very critical false positives meaning that
they actually fail at least one specification limit yet their
predicted values show otherwise. This example shows that
when alternate mapping functions are not trained with a
representative set including possible catastrophic faults, they
are doomed to fail as any other supervised learner. On the
other hand, since alternate HVM mappings are based on
a training set of hardware instances including catastrophic
faults, this is still not a set back for regular alternate test
methodologies.

B. Signature Filter with Alternate Test
Next we repeat the experiment in Section IV-A with the

proposed methodology. The signature filter is constructed as
follows: (i) determine maximum and minimum values for each
signature component over the 300-instance training set (dotted
lines in Figure 3); (ii) enlarge the signature limits by ±25%
of the range (solid lines in Figure 3); (iii) add an additional
3dB margin to the maximum limits for 900MHz and 920MHz
fundamental responses. Table III lists the maximum/minimum
values and filter upper/lower bounds for each signature com-
ponent.

All the signatures in the 100-instance parametric validation
set pass the signature filter, hence the ISO graphs are exact
copies of Figure 2 and prediction errors equals the ones listed
in Table II. The real difference comes from 131-instance
catastrophic fault candidate set. The signature filter identifies
all 74 of catastrophic faults, hence gives 100% fault coverage.
3 out of 57 redundant faults are also eliminated by the
signature filter. The rest of the redundant faults are passed into
the alternate mappings for further classification and only 4 are
false negatives with no false positives. Overall, the alternate
mappings with the signature filter scores 100% fault coverage
on the 131-element catastrophic fault candidate set. Note that
these results are obtained by training on the parametric fault
set only, and without any fault list assumptions for catastrophic
faults.

C. Signature Filter with Extra Training
Although the results in Section IV-B are promising, the

prediction accuracy for the redundant faults is still low,
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because the training set does not include any examples of
this kind. In this part, we present the results for a more
realistic experiment, where the training set is expanded by
a list of redundant faults. For this experiment, we generate an
additional 200-instance training set with single variations in
the range of 10-times to 1/10th of the component value. These

TABLE III
SIGNATURE FILTER UPPER AND LOWER BOUNDS

Frequency max min lower upper
MHz dBm dBm dBm dBm

780 -34.56 -46.18 -49.08 -31.66

800 -31.67 -42.07 -44.67 -29.06

820 -28.73 -40.82 -43.85 -25.71

840 -25.40 -34.39 -36.64 -23.16

860 -21.55 -34.00 -37.12 -18.43

880 -16.15 -24.86 -27.04 -13.97

900 -4.032 -4.65 -4.81 -0.207

920 -4.060 -4.67 -4.82 -0.217

940 -16.23 -31.57 -35.40 -12.39

960 -21.69 -36.39 -40.06 -18.01

980 -25.60 -35.99 -38.58 -23.00

1000 -29.05 -41.43 -44.52 -25.95

1020 -32.19 -42.18 -44.68 -29.69

variations are added on top of the ±30% linearly distributed
process parameter variations. We use the exact same signature
filter in Section IV-B, so that signature filter limits are only
determined by the process parameter variations.

The MARS mappings are trained by the original
300-instance set plus the new 200-instance set. Figure 4 shows
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Fig. 4. ISO graphs for proposed alternate tests with signature filter over the 100-instance validation set and redundant faults. Specification predictions in
y-axis for IIP3, 1dB compression point (1dBcp), noise figure (NF), gain, reverse isolation (RevIso) and input standing wave ratio (Sin); ‘o’s and ‘x’s represent
the instances in the validation set while redundant faults are marked with squares; the only false negative is from the validation set and marked with a red ‘o’.

TABLE IV
SPECIFICATION MAXIMUM AND RMS PREDICTION ERRORS

Parametric Catastrophic Both
Spec Unit rms max rms max rms max
IIP3 dB 0.02 1.43 0.57 1.54 0.36 1.54

1dBC dB 0.05 0.27 0.55 1.39 0.33 1.39

NF dB 0.06 0.59 0.18 0.47 0.12 0.59

Gain dB 0.06 0.42 0.25 0.83 0.16 0.83

RevIso dB 0.02 0.09 0.34 0.91 0.20 0.91

Sin / 0.01 0.04 0.11 0.23 0.07 0.23

Sout / 0.01 0.06 0.07 0.20 0.04 0.20

for parametric and catastrophic faults after signature filter

the ISO graphs for specification predictions. The “o”s and
“x”s represent the passing and failing components in the
100-instance validation set, whereas squares represent the pre-
dictions for redundant faults in the 131-instance catastrophic
fault candidate set. Table IV lists the rms and maximum
prediction errors for parametric fault set, catastrophic fault set
(redundant faults) and both together. There is 1 false negative
in the validation set classification. Note that all 74 catastrophic
faults are correctly identified by the signature filter, where
only 3 of the redundant faults are misclassified. The rest of
57 redundant faults are correctly classified by the mappings,
yielding a total of 100% fault coverage over 231 instances

(validation set + catastrophic fault candidate set).

V. CONCLUSIONS

The proposed signature filter correctly classifies all
catastrophic faults without the need for a predefined fault
library. However, yield loss and prediction error are high when
there are no redundant fault examples in the training set.
Prediction accuracy can be significantly improved by adding
a second training set which assumes a larger and isolated
component variation. The methodology described provides
a simple extension to alternate test methodology for HVM
environments with new fault classes showing up later during
the manufacturing cycle.
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