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Abstract -- At low frequencies, alternate testing is based 
on sampling the test response using an A/D converter and 
analyzing the digitized response in the external tester.  In 
order to use alternate test at frequencies in the multi-GHz 
range, where the above is not possible, the test waveforms 
need to be very simple and the evaluation of the test 
response needs to be handled by on-chip analog test 
response “feature extractors”.   In this work, specialized 
functions of the output response from an alternate test are 
computed using built-in feature extraction sensors, which 
measure a complex function of the response waveform and 
output a DC signature.  Different sensor structures are 
evaluated based on their performance in the presence of 
environmental effects and process shifts  It is seen that 
very simple sensing circuitry can predict high quality 
alternate test for RF components..    

1. Introduction and Objectives 
The challenge of keeping up with the ever-increasing 

operating frequency of the device under test (DUT) has 
initiated a paradigm shift in high speed analog testing 
favoring alternative approaches such as built in test (BIT) 
where the test functionality is brought to the closest 
possible proximity of the DUT, that is, into the 
chip/package.  This scheme can make use of a low cost 
external tester connected through a low bandwidth link in 
order to perform demanding response evaluations, as well 
as make use of the analog to digital converters (ADC) and 
digital signal processors (DSP) available on the 
chip/package to facilitate testing.  In Systems-on-Packages 
(SOPs), test problems due to signal integrity, I/O 
bandwidth, and limited controllability and observability 
make BIT a necessity.  Although recent research on 
analog BIT has demonstrated hardware solutions for 
single specifications, the paradigm shift calls for a rather 
general approach where a single methodology can be 
applied across different devices and multiple 
specifications can be verified through a single test 
hardware unit minimizing area overhead.  In this paper, 
we propose an extension of the alternate test methodology 
that is suitable for BIT of multi-GHz analog and radio 
frequency (RF) components packaged in an integrated 
environment.  There are two key contributions of this 
work:  
• We propose simple sensor structures instead of 

conventional rms or peak detectors.  The conventional 
detectors are very accurate but complex in structure 
hence occupy large area, comes with significant 

parasitics and need elaborate calibration schemes to 
satisfy the region of operation.  In contrast, our sensors 
are simple yet still able to yield accurate specification 
prediction with alternate test.   

• The proposed methodology can compensate these 
simple on-chip sensors for environmental effects such as 
due to temperature as well as process variations without 
additional compensation circuitry.   
The paper is structured as follows: the fundamentals are 

handled in Section 2, where we review the alternate test 
methodology. Section 3 discusses associated test 
challenges for multi-GHz alternate test and summarize the 
solutions proposed.  Section 4 elaborates on one such 
solution, namely DC level feature extractors. Section 5 
gives an implementation of the proposed implicit feature 
extraction, called as differential-topology sensors, as well 
as a technique to compensate these on-chip sensors for 
thermal variations.  Section 6 describes another class of 
implicit feature extractors, recursive sensors, which are 
capable of tracking large process shifts.    

2. Alternate Test Basics 
In specification-based alternate tests, the data sheet 

specifications of a DUT are predicted by analyzing its 
response to a specific input pattern, which is carefully 
crafted to yield a significant correlation between the 
response and the specification variations.  The DUT 
response can be considered as a signature of the effects of 
process variations specific to that DUT instance.  The 
variations in any process variable in the circuit parameter 
space P, affect both the circuit specification space S, and 
the response measurement space M.  Two different non-
linear mappings define these relationships: fps: P � S and 
fpm: P � M.  Nonlinear statistical multivariate regression 
analysis allows one to construct a function fms: M � S such 
that for a given set of measurements, the mapping 
generates predictions for the values of  the 
specifications-under-test [1].   

Figure 1 summarizes the specification-based alternate 
test methodology: an alternate test stimulus is applied to 
DUT and the DUT output is fed to the feature extractors; 
in the next step, the collected data from feature extractors 
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is applied to statistical regression models, which predict 
specifications-under-test. 

Section 4 in [2] covers an extensive bibliography of 
recent research on analog BIT.  These implementations 
propose customized hardware solutions valid for single 
specifications-under-test.  This introduces significant area 
overhead since multiple specification measurements 
require different kind of resources.  Furthermore, most of 
the BIT schemes only provide pass/fail decisions in the 
presence of catastrophic faults.  There are only a few 
approaches, such as [3], which can generate quantitative 
measures for selected number of specifications; however, 
the measurement-to-specification mappings have to be 
hand-crafted specifically to the characteristics of the DUT.  
On the other hand, specification-based alternate test 
provides a general methodology independent of the DUT 
or the target specifications.  In this sense, it is a complete 
tool which can be applied across different devices, and 
multiple specifications can be verified through a single 
data acquisition, thereby minimizing area overhead. 

3. Prior Work: Alternate Test at Multi-GHz 
At low frequencies, alternate testing of analog modules 

is based on sampling the test response using an ADC and 
analyzing the digitized response in the external tester.  The 
sampling of the signature is a critical part of the alternate 
test procedure and such that the speed and accuracy of 
sampling mostly defines the accuracy of predictions.  For 
RF components operating in the gigahertz range, this 
requirement causes a problem, since the Nyquist sample 
rate of such signals and their harmonics may far exceed the 
capabilities of ADCs already present on-chip.  In order to 
use alternate test at frequencies in the multi-GHz range 
with analog and RF components, the test waveforms need 
to be very simple and the evaluation of the test response 
needs to be handled in a way that avoids high speed A/D 
conversion.  Previous work has demonstrated three 
different solutions: the first scheme [4] implements 
upconversion and downconversion of a baseband 
signature; the second [5] makes use of an optimization 
algorithm to find the lowest frequency stimulus that can 
satisfy predefined prediction accuracy; and the third [6] 
implements a digital-BIST compatible approach based on 
reliable subsampling.  The reader may refer to [7] for a 
detailed comparison of these methodologies.  Recently, 
Bhattacharya and Chatterjee in [8] proposed a 
detector-based implementation, which makes use of 
hardware-based test response feature-extractors to produce 
a DC signature of the alternate response.  Although this 
experiment demonstrates the potential of DC level sensors 
used together with alternate tests for BIT, explicit features, 
such as peak or rms, require the use of complex circuitry 
for measuring the corresponding peak and rms values.  

4. DC Level Feature Extractors  
DC level feature extraction has been used in 

measurement setups in the past to measure properties of 
electrical signals such as bias current/voltage, peak, 
root-mean-square (rms), zero-crossing and tuned spectral 
components using explicit feature extraction circuitry (or 
feature detectors). The circuitry associated with such 
detectors is generally complex (an rms detector generates a 
DC voltage proportional to the rms value of the signal). In 
addition, the DC voltage generated is almost always an 
approximation to the signal feature measured. This is 
generally due to the nonlinearities present in the devices 
used to design the detector. The use of bipolar devices  
results in better characteristics and is preferred over the 
use of field effect transistors. However, even bipolar based 
applications require post-production calibration for 
accuracy. To make matters worse, on-chip feature 
detectors suffer from process variation and thermal effects 
that impact the performance of on-chip circuitry that the 
detectors are designed to monitor. In RF circuits, it is 
possible for the detector size to approach the RF DUT 
size, shifting the test focus from the DUT to the detector.  

To alleviate the above problems with conventional DC 
level feature detectors (such as rms/peak detectors) we 
propose a new class of function-mapped (Fmap) sensors 
(detectors).  These Fmap-sensors generate predetermined 
functions of an electrical signal as opposed to specific 
rms/peak values. This has several benefits: (a) the sensor 
designer can choose a simple sensor design and use the 
resulting function of the input signal the sensor generates 
to perform test (as opposed to designing a complex exact 
rms detector) and (b) by combining the use of these 
Fmap-sensors with the alternate test approach, the test 
specifications of the DUT can be predicted with an 
accuracy that is only possible with elaborate 
post-production calibration of traditional sensors and 
additional complex circuitry to take care of process 
variations. This presents a new sensor paradigm for use 
with alternate test methodology.  Since the measurements 
in alternate tests are different from those made in classical 
specification based tests, the built-in sensors used for 
measuring classical figures of merits such as peaks, 
root-mean-square values, zero-crossings, etc can be 
replaced with Fmap-sensors that measure figures that are 
more accessible but harder to relate to the specification 
value.  The mapping process in alternate test will build a 
good enough prediction as long as the changes in the 
measured figure are correlated to the specifications under 
test.   

In order to validate the idea, we have implemented two 
different classes of Fmap-sensors and  demonstrated their 
auto-calibration abilities in the presence of environmental 
variations and large process shifts. 



 

  5. Differential-Topology Sensors 
The peak detector implementation in Figure 2 represents 

a high-end example for common explicit feature 
extractors; its differential nature helps protect against 
process and environmental variables, and it provides a 
more linear mapping when compared to FET/diode-based 
peak detectors, yet keeping a simple structure with low 
transistor count [9].    However, even this implementation 
needs calibration for extending its limited region of 
operation.  Moreover, its output is proportional to the peak 
of the signal provided that the signal is a sinusoidal.  For 
distorted waveforms its accuracy fades dramatically 
destroying the one-to-one mapping.  In [10], a hardware 
modification is proposed to implement a more linear 
transfer function, keeping its relative error in the 8% range.  
On the other hand, this modification makes the 
implementation more complicated, and adds significant 
area overhead.  Our experiments suggest that in the 
presence of regular process and temperature variations, the 
relative error for the original circuit is 42% excluding the 
problematic transition region, and the error goes up to 63% 
after the hardware modifications proposed in [10], making 
it unsuitable for built-in test environments. 

Following the derivation in [7], the output of this sensor 
can be represented as: 

  )ln(
)(

dc

V
tx

to
teVV ⋅=                     (1) 

The derivations in [9] and [10] depend on the assumption 
that when the input, x(t), can be represented with a 
sinusoidal, a modified Bessel function can be used to 
compute an approximation of the DC value for exp(x(t)/Vt), 
resulting in the peak.  Equation 1 is a generalized version 
of this derivation without any extra assumptions. 

Although this detector can be used with alternate tests to 
predict the peak value of the sensor input, prediction of 
more complex specifications such as IIP3 or noise figure 
(NF) demand extra dimensions for the measurement space.  
Therefore, alternate test mapping functions need at least 
one other detector.  Instead of carefully searching for one, 
we propose a generic way to generate a class of sensors 
from a single architecture.  Equation 1 is in the form of 
Vo1 = f1(mean(eg1(input))), where exponential characteristics 
come from the bipolar transistor.  Figure 3 shows the 

second detector, in which the bipolar devices are replaced 
with FETs.  These two sensors, differential-topology 
sensors, make use of the same topology but with different 
active components.  In this case, the 
logarithmic/exponential relation given in Equation 1 is 
replaced with a square-root/square relation yielding the 
form Vo2 = f2(mean(g2(input) 2)).   

Figure 4 shows a generic BIT setup using such sensors: 
a simple on-chip/package analog signal generator applies 
the test stimulus to either the DUT or the input sensors 
through a test multiplexer; the embedded output sensors 
together with optional input sensors produce DC values to 
be sampled by the low-cost external tester.  These DC 
values are fed into the specification mapping module in the 
external tester and non-linear mapping functions output 
predictions for specifications-under-test. 

The accuracy of the differential-topology sensor 
architecture is demonstrated by a series of simulation 
experiments using a 900 MHz low-noise amplifier (LNA) 
[11,6] with 5 process variables: the saturation current and 
the forward gain of the transistors, together with sheet 
resistance.  Each process variable is assumed to have a 
normal distribution with 3� = nom/10, where nom 
represents the nominal value for the variable, and � is the 
standard deviation.  The sample specifications of interest 
are 1dB compression point (1dBCmp), IIP3, and the NF at 
the nominal operating frequency and temperature [5,6].  
The corresponding alternate test stimulus is selected as a 
single 900 MHz sinusoid in favor of its simplicity to be 
generated on-chip/package by a local oscillator or be 
supplied from a low-end external source. 

Two sets of device instances are generated for training 
and validation purposes using the circuit netlist, device 
models, and process variable distributions.  SpectreRFTM 
simulator is used to simulate all of these instances at the 
nominal operating frequency and at the nominal 
temperature of operation.  These simulations are designed 
to measure actual specifications of interest for each circuit 
instance by classical methods.  Using the measurements 
and specifications from the training set, a set of non-linear 
mappings are generated using Multivariate Adaptive 
Regression Splines (MARS) [12].  Then, these mapping 
are used with the validation set to check the accuracy of 
predictions for each specification-under-test.  

Figure 3: FET-based differential-topology sensor. 
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 The experiment is designed to be performed in 6 steps, 
each investigating a controlled branch in the space of 
possible experiments.  The end goal is to demonstrate the 
auto-calibration ability of differential-topology sensors in 
the presence of temperature variations by using the two 
differential-topology sensors at the output of the DUT 
together with a third sensor at the input.  The 1st step 
checks prediction errors for the LNA, when the DUT 
analog response samples are used directly to generate the 
regression models and to predict the specification values of 
the validation set instead of differential-topology sensor 
outputs.  Although sampling at that frequency is not 
feasible for a BIT application, these results represent an 
ideal limit for alternate test predictions without the DC 
level feature extractors and are listed for comparison.  
Similarly, the 2nd step uses analog response samples only 
this time for the validation of the auto-calibration ability.  
For every auto-calibration experiment, the 100-instance 
training set is simulated at 6 discrete temperature values 
-20, 0, 20, 27, 40 and 60˚C; then, a new 400-instance 
validation set is generated by 4 copies of the original 
100-instance validation set.  Each instance in this new 
validation set is simulated at a random temperature in the 
range [-20 60]˚C.  The 3rd step of the experiment 
implements Figure 4, with the two differential-topology 
sensors discussed in Section 5 connected only at the output 
and no input sensors; while 4th step runs the temperature 
auto-calibration experiment described above with the same 
setup.  The 5th step challenges the ability of the FET-based 
sensor as an explicit temperature monitor; in this 
experiment, the simulation temperature is provided to the 
training set explicitly and MARS mappings are generated 
for the temperature using this sensor alone.  Finally, the 6th 
step of the experiment validates the proposed 
auto-calibration methodology by using the FET-based 
sensor (Fig. 3) at the input together with two 
differential-topology sensors at the output. 

Table 1 shows the summary of results for all 6 steps.  
For each case, the maximum prediction error is listed as 

the absolute difference from the original specification.  
The numbers in Table 1 should always be considered 
together with secondary measures such as percentage 
errors and number of misclassifications. 

In order to validate the ability of differential-topology 
sensors to predict complex specifications, one can compare 
the results of steps #1 and #3.  Both of these experiments 
are performed at a constant temperature.  In the ideal 
sampled case of #1, the maximum percentage error is 
1.1%; whereas in #3 using DC signatures of the 
differential-topology sensors, the error goes up to 6.2%.  
Although this error is significantly larger than the ideal 
one, the accuracy is still comparable to the error resulting 
from the repeatability of a classical test measurement. 
Furthermore, the misclassification rate is the same for both 
setups, only 1 out of 100 instances.  

When setups missing the temperature monitor sensor are 
compared with the corresponding setups performed at 
constant temperature - #2 vs #1 and #4 vs #3 -, the error 
percentages are observed to go up significantly, yielding 
similar misclassification rates around 21%.  Although the 
predictions for the instances simulated at around the 
nominal temperature are similar in terms of accuracy, the 
rest of them result in significant deviations from the 45˚ 
line.  This hazy constellation graph is depicted in Figure 6 
for IIP3 measurements in setup #4.  The figure shows that 
in the absence of the input sensor acting as a temperature 
monitor, test results are off-the-chart as expected. 

TABLE  I.      MAXIMUM PREDICTION ERRORS OF THE ACTUAL 
SPECIFICATION VALUES 

 

# Temp  IIP3 1dbC Noise Figure* 
1 No Ideal samp. 0.072 dB 0.092 dB 0.0081 
2 Yes Ideal samp. 3.2 dB 4.8 dB 1.19 
3 No 2 sensors 0.41 dB 0.52 dB 0.25 
4 Yes 2 sensors 3.3 dB 4.7 dB 1.23 
5 Yes** 2+1 sensors 3.3 dB 4.7 dB 1.23 
6 Yes 2+1 sensors 0.62 dB 0.94 dB 0.19 
     * at 900 MHz                   ** Temperature as an explicit property 

Figure 5: Predicted vs actual specifications for LNA with 2 differential-topology sensors and temperature monitor sensor. 



 

Steps #5 and #6 are performed in the presence of an 
input sensor as a temperature monitor.  In #5, the signature 
of this additional sensor is only used for prediction of 
temperature as an explicit goal; hence, the specification 
predictions are not different from those in #4.  The purpose 
of step #5 is not to enhance the specification prediction, 
but to validate the use of the additional sensor as a 
temperature predictor.  The results from the temperature 
mapping module show that the maximum error is 3.37˚C 
and the rms error is 1.20˚C.  Finally, step #6 validates the 
proposed auto-calibration methodology.  In this case, 
temperature is treated as an internal variable, and the DC 
signature of the third (input) sensor is used with the other 
two output sensors to directly predict specifications-
under-test.  All three readings are directed to the same 
mapping function trained to predict IIP3, 1dbCmp and NF. 
Figure 5 shows the constellation graphs for this setup, 
where the maximum percentage error is 8.1% and only 3 
instances are misclassified out of 400. More constellation 
graphs about these 6 experiments are presented in [7]. 

6. Recursive Sensors 
The mappings generated by alternate tests are valid 

under the assumption that the process variations on the 
manufacturing line are approximately within the same 
range used for producing the training set.  When there is a 
large shift in one of the process variables, the mappings 
have to be calibrated accordingly.  One can always use a 
larger training set to account for these process shifts, 
however the number of instances in the training set grows 
exponentially with the range of variations.  Instead, the 
input sensors in Figure 4 can be used as process monitors, 
which can map process shifts efficiently with a small 
number of training instances.   

In order to build process monitors, we first start with the 
differential-topology sensors and evaluate their potential.  
Since these sensors are differential, their sensitivity is 
limited in terms of reflecting large process variations.  
Each differential-topology sensor makes use of a different 

active device; for some processes, in which only one type 
of an active device is present, this will be a disadvantage.   
Furthermore, each sensor at the output changes the load of 
the DUT and lumped implementations may require a 
redesign of the matching network.   

Figure 7 shows a variation of the sensor in Figure 2.  
This new class of detectors is single-ended and the loading 
is constant regardless of the number of sensors at the 
output, because each new sensor input is connected to a 
node of the previous sensor.  In this sense, the output 
function of sensor m, is defined recursively in terms of the 
sensors 1 to m-1 connected between the DUT output and 
input of the last stage.  Furthermore, these sensors require 
only one type of active device.  In this paper we will call n 
such sensors as an nth-order process monitor if they are 
connected at the input of the DUT, and as an nth-order 
recursive sensor if connected at the output.  The question 
of using what combination of process monitors and 
recursive sensors is a debate between the improvement in 
accuracy and the extra area overhead, being subject to the 
magnitude of anticipated process shifts.  Although the 
signatures of different orders are not independent, a certain 
level of redundancy helps avoid overfitting to noisy 
signatures. 

In order to compare the performance, we ran the same 
experiment in Table 1, row #3 by replacing the two 
differential-topology output sensors with a 2nd order 
recursive sensor.  The maximum errors are very similar: 
0.46dB, 0.54dB and 0.25 for IIP3, 1dBCmp and NF 
respectively.   

The process shift calibration capability of recursive 
sensors is demonstrated by a series of simulation 
experiments using the same LNA in Section 5.  In this 
case, each process variable is assumed to have a normal 
distribution with 3� = nom/2, instead of the nom/10 span.  
This way the process parameter space is enlarged by 
55 = 3125 times, which would require the same order of 
increase in training set if there were no process monitors.  
We have designed the experiments by using a 2nd order 

Figure 6: IIP3 Prediction without 
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process monitor together with a 2nd order recursive sensor.  
Although, we have experimented with many other 
combinations and orders, the accuracy does not increase 
significantly above the 2x2 configuration.  In order to 
compare the results, we have also run experiments 
identical except for the absence of the process monitor. 

The results of the experiments are depicted in Figure 8.  
First of all, an experiment with 3� = nom/10 is conducted 
with 25 instances in the training set and its results are used 
as a reference for the experiments with recursive sensor 
and process monitor.  Hence, the x-axis shows the ratio of 
the number of training samples used with the new sensor 
set to that of the reference set.  Likewise, y-axis shows the 
ratio of rms error in 1dbCmp prediction.  The dashed line 
in Figure 8 shows that without the process monitors, it is 
not even possible to generate a mapping with small 
training sets; even the training set 128 times larger than the 
reference is off the chart in terms of accuracy.  On the 
other hand, the experiments with process monitors show 
good tracking at even small set sizes, where 4x represents a 
break point.   Thus, when a 2nd order process monitor is 
used with a 2nd order recursive sensor, a training set 4 
times larger is adequate to replace the 3125 times larger 
training set designed for process shifts.  The constellation 
graph for this configuration is given in Figure 9. 

7. Conclusion and Future Work 
Hardware-based feature extractors provide a promising 

new platform when used with alternate test methodology.  
The auto-calibration ability of these sensors is 
demonstrated with two examples in the presence of 
environmental variations and large process shifts.  The 
work is currently being extended to even simpler detector 
structures that can serve as process variation monitors. 
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Figure 9: Predicted vs actual specifications for LNA with 2nd order process monitor and 2nd order recursive sensor. 

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Actual   1dBcp    

P
re

di
ct

ed
  

 1
dB

cp
   

 

  1dBcp    

-2 0 2 4 6 8
-2

0

2

4

6

8

Actual    IIP3    

P
re

di
ct

ed
  

  I
IP

3 
   

   IIP3    

4 4.5 5 5.5

4

4.5

5

5.5

Actual  NF@900MHz 

P
re

di
ct

ed
  N

F@
90

0M
H

z 

 NF@900MHz 

Figure 9: Predicted vs actual specifications for LNA with 2nd order process monitor and 2nd order recursive sensor. 

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Actual   1dBcp    

P
re

di
ct

ed
  

 1
dB

cp
   

 

  1dBcp    

-2 0 2 4 6 8
-2

0

2

4

6

8

Actual    IIP3    

P
re

di
ct

ed
  

  I
IP

3 
   

   IIP3    

4 4.5 5 5.5

4

4.5

5

5.5

Actual  NF@900MHz 

P
re

di
ct

ed
  N

F@
90

0M
H

z 

 NF@900MHz 

-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

Actual   1dBcp    

P
re

di
ct

ed
  

 1
dB

cp
   

 

  1dBcp    

-2 0 2 4 6 8
-2

0

2

4

6

8

Actual    IIP3    

P
re

di
ct

ed
  

  I
IP

3 
   

   IIP3    

4 4.5 5 5.5

4

4.5

5

5.5

Actual  NF@900MHz 

P
re

di
ct

ed
  N

F@
90

0M
H

z 

 NF@900MHz 


